
Addendum: some notes on the geometrical concepts used in the proof 
 

In this note we will use examples (and pictures) to examine the geometrical properties of some of 

the polytopes encountered in the proof, and to examine the relations between these polytopes (and 

their volumes), in the hope that the underlying geometrical interpretation of the core formulas in the 

proof becomes more apparent.  The pictures in this note were created with GeoGebra 5 beta release. 

We start by repeating some definitions and partial results from the proof. 

In the proof we studied the parametric polytope      defined by 

{  
              
            

 

with     and      .  As in the proof, let      be the face of      lying in the bounding 

hyperplane             , and let       be its orthogonal projection onto the hyperplane 

    . 

We proved that the coefficient      of degree     of        in   (  even) is equal to 

        
           

In the proof we also introduced the polytopes (simplexes) defined by 

{  

            
            

      [ ]   
 

where   can be any subset of [ ]  {     } (I replaced the    from the proof by   here, for ease of 

notation).  Let us call the above simplex      , and let   
     be its orthogonal projection onto the 

hyperplane     . 

In this note we will examine, by means of some examples, the geometrical properties of the 

polytopes     ,     ,      ,      , and   
    , and  the relations between these polytopes (and 

their volumes), in the hope that the underlying geometrical meaning of the following two summation 

formulas, which play an important role in the proof, becomes more apparent: 
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As can be seen from the definition, the polytope      is the intersection of the unit hypercube and 

the hyperplane             , and      is the part of the unit hypercube “under” this 

hyperplane (the part lying on the side which also contains the origin). 



The easiest mental picture can be made for the case     (so we drop all the “hyper” prefixes, 

     means “volume of”, and        means “area of”).  In the proof we assumed   to be even, but 

for the current discussion this restriction is not necessary.  Also, the case     seems to be too 

trivial as an example, and for     it becomes much harder to make clear pictures.  With     

and   ⌊   ⌋    the above summations have only two terms (    and    ), which is not 

enough to make the ideas very clear.  So in the examples for     we do not fix     in advance 

(but we still assume that      ). 

 

The first picture shows the case where     and      .  In the pictures, the coordinate axes are 

colored in red (  ), green (  ) and blue (  ).  We can clearly recognize the unit cube, the plane 

          , and the face     , which in this case happens to be hexagonal (F1 in picture; its 

vertices are the points with labels L, M, N, O, P, and Q).  Note that      would have been triangular if 

    or if     (see below). 

The same picture also shows some of the simplexes (tetrahedrons)      .  All these tetrahedrons 

have right angles at one of the vertices (the vertex that coincides with one of the vertices of the unit 

cube, which we will call the apex of the tetrahedron, seeing the tetrahedron as a tilted pyramid), and 

the other three vertices (which we will call base vertices) are somewhere on the hyperplane 

          . 

The tetrahedrons shown in the picture are      ,    { } ,    { }  and    { } . 



The first one,      , has apex A:       , and its three base vertices are I:       , J:        and 

K:       .  Its volume is     . 

The second tetrahedron,    { } , has apex B:       , and its three base vertices are I:       , 

M:          and L:         .  Its volume is         , because now the three (perpendicular) 

edges connecting the apex to the base vertices all have the same length    . 

The other two displayed tetrahedrons,    { }  and    { } , have the same shape and volume as 

   { } .  Actually they are just translations of    { } , with apex in D:        and E:        

respectively.  With     the unit cube has three vertices where one coordinate is 1 and the other 

two coordinates are 0, so we have three tetrahedrons with this same shape and volume.   

The three tetrahedrons    { } ,    { }  and    { }  are included in the larger tetrahedron      .  

Moreover, because        , the three tetrahedrons    { } ,    { }  and    { }  are disjoint, 

and we already know that they have the same volume as    { } .  It is now clear that 

                                { }   

Still for     and      , ⌊ ⌋   , and thus the formula for            from the proof becomes 
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We see now that both formulas for            are in fact one and the same.  The first term gives the 

volume of the tetrahedron      .  There is only   (
 

 
) such tetrahedron.  The second term gives 

the total volume of the tetrahedrons    { } ,    { }  and    { } .  There are   (
 

 
) such 

tetrahedrons. 

The previous line of reasoning can be repeated almost exactly for the orthogonal projections of the 

tetrahedrons, which then become right-angled equilateral.  These are also shown in the same 

picture, in the plane     .  We will also look at this case in detail, although basically this is just a 

“copy/paste” of what has already been said. 

The triangles shown in the picture are   
    ,   

  { } ,   
  { }  and   

  { } . 

All these triangles have right angles at one of the vertices (the apex, the vertex that coincides with 

one of the vertices of the unit square), and the other two vertices (the base vertices) are somewhere 

on the line             . 

The first triangle,   
    , has apex A:       , and its two base vertices are I:        and J:       .  Its 

volume is     . 

The second triangle,   
  { } , has apex B:       , and its two base vertices are I:        and 

M:         .  Its volume is         , because now the two (perpendicular) edges connecting the 

apex to the base vertices all have the same length    . 

The other two displayed triangles,   
  { }  and   

  { } , have the same shape and area as   
  { } .  

Actually they are just translations of   
  { } , with apex in D:        and A:        respectively.   



The three triangles   
  { } ,   

  { }  and   
  { }  are included in the larger triangle   

    .  

Moreover, because        , the three triangles   
  { } ,   

  { }  and   
  { }  are disjoint, and 

we already know that they have the same area as   
  { } .  Note that the face       is shown as F2 

in picture; its vertices are the points with labels B, M, N, D, R, and S.  It is now clear that 

      
             

              
  { }   

Still for     and      , ⌊ ⌋   , and thus the formula for       
      from the proof becomes 
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We see now that both formulas for       
      are in fact one and the same.  The first term gives 

the area of the triangle   
    .  There is only   (

 

 
) such triangle.  The second term gives the total 

area of the triangles   
  { } ,   

  { }  and   
  { } .  There are   (

 

 
) such triangles. 

Next, in order to get three terms, we must take   between   and  .  So let us take       now.  

This configuration is depicted in the second picture. 

 



Now    , so the face      is triangular.  Its vertices are T:       , U:        and V:      .  The 

four tetrahedrons shown in the first picture,      ,    { } ,    { }  and    { } , are also shown in 

the second picture (the vertices have the same labels as in the first picture).  But this time all the 

tetrahedrons are larger, and more importantly, the three smaller of these four tetrahedrons, 

   { } ,    { }  and    { } , are not disjoint. 

The intersection of the tetrahedrons    { }  and    { }  is the tetrahedron    {   } , and similarly 

for the other pairs.  So now we have an additional level of even smaller tetrahedrons,       where 

| |   , which, as we will see, will result in an additional term in the formulas.  There are ( 
 
)    

ways to select the two numbers in   from the set [ ], so there are indeed 3 additional smaller 

tetrahedrons:    {   } ,    {   }  and    {   } . 

All these smaller tetrahedrons also have right angles at one of their vertices (the apex, the vertex 

that coincides with one of the vertices of the unit cube), and the other three vertices (the base 

vertices) are somewhere on the hyperplane           . 

The tetrahedron,    {   } , has apex C:       , and its three base vertices are N:         , 

M:          and T:         .  Its volume is         , because now the three (perpendicular) 

edges connecting the apex to the base vertices all have the same length    . 

The other two displayed tetrahedrons,    {   }  and    {   } , have the same shape and volume as 

   {   } .  Actually, they are just translations of    {   } , with apex in F:        and H:        

respectively.  With     the unit cube has three vertices where two coordinate are 1 and the other 

coordinate is 0, so we have three tetrahedrons with this same shape and volume.   

The three tetrahedrons    {   } ,    {   }  and    {   }  are disjoint (   ). It is now clear that 

                                 { }            {   }    

                      { }            {   }   

Still for     and       as above, ⌊ ⌋   , and thus the formula for            from the proof 

becomes 

           
 

 
∑     (

 
 
)       

 

   

 (
 
 
)
  

 
 (

 
 
)
      

 
 (

 
 
)
      

 
 

We see now, once more, that both formulas for            are in fact one and the same.  The first 

term gives the volume of the tetrahedron      .  There is only   (
 

 
) such tetrahedron.  The 

second term gives the total volume of the tetrahedrons    { } ,    { }  and    { } .  There are 

  (
 

 
) such tetrahedrons.  The second term gives the total volume of the tetrahedrons    {   } , 

   {   }  and    {   } .  There are   (
 

 
) such tetrahedrons. 

We could again repeat this line of reasoning for the orthogonal projections of the tetrahedrons, as 

shown in the second picture as well.  Since this a completely analogous to what we have done 

before, no further explanation is necessary. 



In general, as the dimension   increases, even more additional levels (i.e., terms) are possible, 

where each level   | | contains ( 
 
) simplexes       of the same shape and volume.  Their apexes 

coincide with one of the vertices of the unit hypercube having exactly   coordinates equal to 1, and 

the others equal to 0. 

Note that, if we would continue to increase   such that         (so ⌊ ⌋      , an apex of 

one of those simplexes       would be connected to each vertex of the unit hypercube, except to 

the outer vertex        .  Since a hypercube of dimension   has exactly    vertices, it must be true 

that 
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which is of course the case.  This sum is also equal to the number of proper subsets   of [ ]. 
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