Al Zimmermann's Programming Contest Factorials

Example: 25!

Here I try to explain my methods using 25! as an example. A table on the last page shows the shortest sequences for all n!.

Use normal backtracking where in each step k the number f(k), the "binary log code" of f(k) and the "cumulative prime flags integer" is calculated. You don't need big number arithmetic. Find more details in the chapter Remarks below the first tables.

step k	operation	number f(k)	prime factorization	binary log code (23-19-17-13-11-7-5-3-2)	prime flags
0		1	1	0	000000000
1	f(0) + f(0)	2	2	00001	00000001
2	$f(1) \times f(1)$	4	2 ²	00010	00000001
3	f(2) + f(1)	6	3.2	0001-00001	00000011
4	$f(3) \times f(3)$	36	$3^2 \cdot 2^2$	0010-00010	00000011
5	f(4) + f(3)	42	7.3.2	01-000-0001-00001	000001011
6	f(5) + f(4)	78	13.3.2	1-00-00-000-0001-00001	000101011
7	f(6) + f(4)	114	19.3.2	1-0-0-00-00-000-0001-00001	010101011
8	f(7) + f(3)	120	$5\cdot 3\cdot 2^3$	001-0001-00010	010101111
9	f(8) × f(5)	5040	$7\cdot 5\cdot 3^2\cdot 2^4$	01-001-0010-00100	010101111
10	f(9) × f(8)	604800	$7 \cdot 5^2 \cdot 3^3 \cdot 2^7$	01-010-0011-00111	010101111
11	f(10) + f(9)	609840	$11^2 \cdot 7 \cdot 5 \cdot 3^2 \cdot 2^4$	10-01-001-0010-00100	010111111
12	f(11) + f(8)	609960	$23 \cdot 17 \cdot 13 \cdot 5 \cdot 3 \cdot 2^3$	1-0-1-1-00-00-001-0001-00011	111111111

In this case after 12 steps all prime factors are available because Prime Flags = $(11111111)_2$. Now we can try to find a solution by multiplication of certain numbers f(1) to f(12). In fact we can subtract recursively log codes of numbers from the log code of $25! = 23 \cdot 19 \cdot 17 \cdot 13 \cdot 11^2 \cdot 7^3 \cdot 5^6 \cdot 3^{10} \cdot 2^{22}$ until the result is equal to 0.

logCode(25!)	1-1-1-1-10-11-110-1010-10110
– logCode(f(12))	1-0-1-1-00-00-001-0001-00011
=	1-0-0-10-11-101-1001-10011
– logCode(f(7))	1-0-0-00-00-000-0001-00001
=	10-11-101-1000-10010
– logCode(f(11))	10-01-001-0010-00100
=	10-100-0110-01110
– logCode(f(10))	01-010-0011-00111
=	01-010-0011-00111
– logCode(f(10))	01-010-0011-00111
=	0

Therefore the sequence can be continued with the following multiplications:

13	f(12) × f(7)	А
14	f(13) × f(11)	В
15	f(14) × f(10)	С
16	f(15) × f(10)	25!

The numbers A, B, C and 25! can be calculated with another program or even "by hand" with a big number calculator.

Remarks

Backtracking

To avoid doublets check for each new number that is smaller than the actual maximum if this new number would also be available in a previous step where actual a larger number is calculated. If this is the case the new number will be ignored. The backtracking ends with the last subtraction or addition. In the worst cases like 33! this happens in step 16.

Binary Log Code

Prime Flags

We describe all flags in a single integer. Even 100! has got only 25 prime factors. The prime flags do not only describe the primes in the actual number but also in the numbers of all previous steps. The prime flags were not changed by a multiplication.

Numbers that are not fractions of n!

If such a number occurs set the log code equal to the overflow mask. Such numbers can't be used for the final multiplications. In fact you should avoid such numbers. Only in the case of 33! I had to work with a non-fraction namely the prime 107. (In the contest I found this sequence later than all others.) [Some contestants like Thomas Rokicki found SLPs for 33! that consist only fractions of 33!.] [Herbert Kociemba found out that my SLP for 22! contains the number 23279477760 which is not a fraction of 22!.]

Monotone increasing sequences

In the above shown example for 25! no subtraction is used and f(k) > f(k-1) for all k > 0. Therefore the sequence is monotone increasing. A score of about 23.00 would have been possible by using only such sequences. For 13!, 15!, 25! and 29! the minimum number of steps can be reached by monotone increasing sequences.

Consecutive [chaining] sequences

At least for small factorials you can find the shortest possible sequences by doing all new operations with the last element. That means for all integers k > 0: $f(k+1) = f(k) + / - / \times f(a)$ with $0 \le a \le k$.

The above example for 25! fulfills this principle. It also works from 13! up to 23!. The first factorial of the contest where you can't find the shortest sequence with this principle seems to be 24!.

If you would have used this principle from step 7 to the last +/- operation you would have reached a score of 24.04.

Program output

The last +/- operation occurs at step 12. The sequence ends with 4 multiplications. Output of my program:

16 steps: 1,2,3,6,36,42,78,114,120,5040,604800,609840,609960, 1*(12)=609960,1*(11)=609840,2*(10)=604800,1*(07)=114

```
That means: 25! = 604800^2 \cdot 609960 \cdot 609840 \cdot 114
```

Improving sequences

If your backtracking works only until step 11 start a new backtracking by applying the first numbers of the found sequences. Now you can handle a few steps more. You can get our sequence with 16 steps from a sequence with 17 steps where the last +/- operation is already done in step 11. See that the first 9 numbers are equal:

17 steps:1,2,3,6,36,42,78,114,120,5040,5082,5083and $25! = 114 \cdot (5083 \cdot 120) \cdot (5082 \cdot 120) \cdot (5040 \cdot 120)^2$ 16 steps:1,2,3,6,36,42,78,114,120,5040,604800,609840,609960and $25! = 114 \cdot 609960 \cdot 609840 \cdot 604800^2$

Walter Trump, 2013-04-20 [2013-04-21]

Sho	Shortest SLPs [just one sample for each n! – not all mentioned properties are represented] Walter Trump, 2013-04-20				
n	steps	factorization of n!	sequence that generates the factors		
13	11	273·275·288 ²	1,2,4,16,15,18,288,273,275		
14	11	20160-20020-36-6	1,2,4,6,36,144,140,20160,20020		
15	12	6048.6006.6000.6	1,2,4,6,36,42,1512,6048,6006,6000		
16	12	144144.144000.1008	1,2,4,5,7,12,144,1008,1001,144144,144000		
17	12	3740·3744·5040 ²	1,2,4,6,36,1296,1260,5040,3744,3740		
18	13	891072·891000·8064	1,2,4,6,36,72,108,112,8064,7956,891072,891000		
19	13	2394·7128576·7128000	1,2,4,6,24,576,600,2400,2394,2970,7128000,7128576		
20	14	$6 \cdot 25194 \cdot 25344 \cdot 25200^2$	1,2,4,6,36,144,140,176,25344,25200,25194		
21	14	25840.44478720.44452800	1,2,4,16,20,80,1600,1620,25920,25840,27440,44452800,44478720		
22	14	23279256000.71850240.672	1,2,3,6,18,324,330,336,672,221760,71850240,23279477760,23279256000		
23	15	1428134400.1432569600.12636	1,2,3,9,27,36,324,351,12636,4435236,4435200,1437004800,1432569600,1428134400		
24	15	11629094400.4590.11623772160	1,2,4,6,24,96,2304,2280,2184,2310,4590,5322240,11623772160,11629094400		
25	16	$114 \cdot 609960 \cdot 609840 \cdot 604800^2$	1,2,4,6,36,42,78,114,120,5040,604800,609840,609960		
26	15	3744216·(3744000·2772) ²	1,2,3,6,36,38,216,1368,2736,2737,2772,3744216,3744000		
27	16	15237331200.15190156800.47044800	1,2,3,6,18,324,322,342,360,363,129600,47044800,47174400,15190156800,15237331200		
28	16	$342144 \cdot 326876 \cdot (336960 \cdot 4900)^2$	1,2,4,8,64,72,70,4900,5184,331776,326876,336960,342144		
29	17	$14616 \cdot 1404081 \cdot (1404000 \cdot 14784)^2$	1,2,3,9,81,84,87,96,168,14616,14625,14784,1404000,1404081		
30	17	45356·380·(45760·45360·1890) ²	1,2,4,5,20,24,400,380,378,1890,45360,45356,45760		
31	18	40398976800.40239309600.159667200.31680	1,2,4,6,36,1296,1260,5040,6336,25344,25346,31680,31935960,159667200,40239309600,40398976800		
32	18	$20026 \cdot 20010 \cdot 150 \cdot (20020 \cdot 20160 \cdot 144 \cdot 36)^2$	1,2,4,6,36,144,140,150,20160,20010,20020,20026		
33	18	25318477836288000·25316575764480000 ·13547	1,2,3,9,11,121,110,107,130,13310,13440,13547,120960,15724800,1902071808000, 25316575764480000,25318477836288000		
34	17	6661729122048000·6661517403340800 ·6652800	1,2,4,6,36,144,216,210,220,31680,31464,31824,6652800,211718707200, 6661517403340800,6661729122048000		
35	19	899·874·6683040 ² ·6652800 ³	1,2,4,6,10,36,35,216,220,864,874,899,30240,6652800,6683040		
36	18	39970374732288000·1398918654701568000 ·6652800	1,2,4,6,36,35,216,220,864,899,30240,6652800,6683040,44460928512000, 39970374732288000,1398963115630080000,1398918654701568000		
37	20	$1002478 \cdot 62640 \cdot (238 \cdot 62400)^2 \cdot (4158 \cdot 240)^3$	1,2,4,16,256,240,238,260,4160,4158,62400,62640,1002240,1002478		